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 ABSTRACT: In this paper, a genetic algorithm is proposed to solve the weight minimization problem of dome structures considering 

configuration, shape, and sizing design variables. The design of braced dome structures is optimized by an efficient optimization algorithm 

called Teaching-Learning-Based Optimization (TLBO). The process of TLBO is divided into two parts: the first part consists of the 

‘Teacher Phase’ and the second part consists of the ‘Learner Phase’. Analyses of structures are performed by a finite element  code in 

MATLAB which is used in conjunction with an optimization code based on TLBO. The effectiveness of TLBO algorithm is demonstrated 

through two benchmark braced domes (52-bar, and 56-bar). 
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1. INTRODUCTION 

Domes are one of the oldest magnificent structural systems. They 

consist of one or more layers of elements that are arched in all 

directions. Domes are used to cover large areas such as exhibition halls, 

stadium and concert halls. They provide a completely unobstructed 

inner space and economy in terms of materials. They are lighter 

compared with the more conventional forms of structures (Ref.1). 

Structural optimal design has always been a concern for engineers in 

practice. The focus is not only in construction cost, but also in geometry 

of structures. It is responsible for engineers to design structures with 

high reliability and low cost. For these purposes, many optimal 

algorithms were investigated to accomplish the tasks including the 

classical methods and the innovative algorithms. 

In the early 1990s, the genetic algorithm was presented in Ref.2, then, it 

was made significant achievements in structural optimization fields 

(Ref. 3-5). 

Teaching-learning-based optimization (TLBO) is a recently proposed 

metaheuristic algorithm [6-8]. The easy and effectiveness of TLBO were 

supported by research works of many other researchers published (Ref. 

9-11). In the problem of size and geometry optimization of truss 

structures, the cross-sectional area and the geometry of primary 

structures both increase the dimension of the design space. It has been 

proved that TLBO algorithm performs well in problems with large 

dimensions (Ref. 12). 

2. TLBO ALGORITHM

One of the recently developed metaheuristics is teaching-learning-

based- optimization (TLBO) algorithm (Ref. 6, 8). TLBO has many 

similarities to evolutionary algorithms (EAs): an initial population is 

randomly selected, moving on the way to the teacher and classmates is 

comparable to mutation operator in EA, and selection is based on 

comparing two solutions in which the better one always survives. 

Similar to most other evolutionary optimization methods, TLBO is a 

population-based algorithm inspired by learning process in a classroom. 

The searching process consists of two phases, i.e. Teacher Phase and 

Learner Phase. In teacher phase, learners first get knowledge from 

a teacher and then from classmates in learner phase. In the entire 

population, the best solution is considered as the teacher . On 

the other hand, learners learn from the teacher in the teacher phase. In 

this phase, the teacher tries to enhance the results of other individuals 

by increasing the mean result of the classroom  towards his/her 

position . In order to maintain stochastic features of the search, 

two randomly-generated parameters r and are applied in update 

formula for the solution  as: 

(1) 

where r is a randomly selected number in the range of 0 and 1 and TF is 

a teaching factor which can be either 1 or 2: 

(2) 

Moreover,  and  are the new and existing solution of i, (Ref. 6). 

In the second phase, i.e. the learner phase, the learners attempt to 

increase their information by interacting with others. Therefore, an 

individual learns new knowledge if the other individuals have more 

knowledge than him/her. Throughout this phase, the student  interacts 

randomly with another student  ( ) in order to improve his/her 

knowledge. In the case that  is better than  (i.e. )< ) for 

minimization problems),  is moved toward . Otherwise it is moved 

away from : 

 if )> ) (3) 

 if )< ) (4) 

If the new solution  is better, it is accepted in the population. The 

algorithm will continue until the termination condition is met. The 

pseudo code shown in Table 1 demonstrates the TLBO algorithm step-

by-step. 
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Table 1. Pseudo code for TLBO 

Set k=1; 

Objective function f(X), 

d=no. of design variables 
Generate initial students of the classroom randomly 

, ,    n=no. of students 
Calculate objective function f(X) for whole students of 
the classroom 
WHILE (the termination conditions are not met) 
{Teacher Phase} 

Calculate the mean of each design variable 
Identify the best solution (teacher) 

FOR 

Calculate teaching factor 

Modify solution based on best solution(teacher) 

Calculate objective function for new mapped student 

) 

IF  is better than 

END IF {End of Teacher Phase} 
{Student Phase} 

Randomly select another learner  ( ) 

IF  is better than 

ELSE 

END IF 

IF  is better than 

END IF {End of Student Phase} 
END FOR 
Set k=k+1 
END WHILE 

3. FORMULATION OF OPTIMIZATION

One of the most important factors in the structural design is the total 

structural weight. In this study, dome structures are designed to be the 

minimum weight. For this aim, the objective function for the dome 

structures is formulated as: 

minimize: 

(5) 

subject to: 

(6) 

(7) 

(8) 

(9) 

where  (bar cross-sectional areas) and  (nodal coordinates) are the 

design variable, respectively;  is the weight of the dome;  and  is 

the material density and the length of the i-th element, respectively; n is 

numbers of bars in the dome; is element stress, and  is node 

displacement of the dome. Inequality (8) and (9) indicates that the 

design variables including either a shape or sizing variable must take a 

value between lower and upper bounds. 

and (10) 

Where  is the value of each constraints. The objective function must 

be changed as independent of constraints. For this aim, a penalty 

function calculating value of violation of constraints is determined. By 

means of this function, the objective function is changed to a function 

including constraints. Penalty function is given as: 

(11) 

Where nc is the number of the constraints. Objective function is 

changed to penalized objective function by adding penalty function to 

it. The penalized objective function, , can be formulated as: 

(12) 

Where P is a positive constant which is a variable for each problem. 

This constant can be determined by the user to take into account of the 

constraints. 

4. NUMERICAL EXAMPLES

To demonstrate the proposed solution method a braced dome structure 

is presented as a sizing problem with discrete design variables and 

second solution as a shape optimization with continuous design 

variables. 

In order to compare the effect of bars configurations on the solution two 

schemas with different topologies were proposed. 

Properties of applied material for both examples are shown in Table 2. 

Table 2. Structural constraints and material properties 

Properties / constraints unit value / notes 

Modulus of elasticity E (N/m2) 

Material density   (kg/m3) 7800 

Displacement constraints  (m) 0.1 for each directions 

Stress constraints  (N/m2) 
 for tension 

 for compression 

4.1. Example 1 

The 52-bar dome is subjected to a downward vertical equipment loading 

of 30 kN at nodes 1, 6-13, and 60 kN at nodes 2-5, and simply 

supported at nodes 14-21. The geometry and nodal coordinates are 

presented in Fig. 1. 

Fig. 1 Plan view and element grouping for 52-bar dome 

4.2. Example 2 

The 56-bar dome is subjected to a downward vertical equipment loading 

of 30 kN at nodes 1-17, and simply supported at nodes 18-25. The 

geometry and nodal coordinates are presented in Fig. 2. 

Fig. 2 Plan view and element grouping for 56-bar dome 
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4.3. Discrete size optimization 

The structural element of example 1 (52-bar) is classified in 8 groups for 

the discrete size optimization. Example 2 (56-bar) has 7 groups, 

respectively. Thus, the cross-sections area are the design variables for 

the size optimization, respectively. 

Table 3. Available cross-section area 

Pipe 

D*t 

CS 

[cm2] 

Pipe 

D*t 

CS 

[cm2] 

Pipe 

D*t 

CS 

[cm2] 

Pipe 

D*t 

CS 

[cm2] 

20*2 1.13 - - - - - - 

30*2 1.76 30*3 2.54 - - - - 

40*2 2.39 40*3 3.49 40*4 4.52 - - 

50*2 3.01 50*3 4.43 50*4 5.78 50*5 7.07 

- - 60*3 5.37 60*4 7.03 60*5 8.64 

- - 70*3 6.31 70*4 8.29 70*5 10.21 

- - 80*3 7.25 80*4 9.55 80*5 11.78 

- - 90*3 8.20 90*4 10.80 90*5 13.35 

D – pipe diameter [mm], t – pipe thickness [mm], CS – cross-section 

Available cross-sections are shown in Table 3. The size of population is 

Pn=30 and the number of generation is Gn=100 for both examples. 

Result are shown in Table 4. 

Table 4. Optimal solutions for size optimization 

Design 

variables 

Example 1 

52-bar 

Pipe 

D*t 

Example 2 

56-bar 

Pipe 

D*t 

S
iz

e 
o

p
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m
iz
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n
 

cr
o

ss
-s

ec
. 

ar
ea

 (
cm

2
) 

A1 3.49 40*3 1.76 30*2 

A2 1.76 30*2 3.01 50*2 

A3 2.54 30*3 4.43 50*3 

A4 5.37 60*3 1.13 20*2 

A5 2.54 30*3 2.39 40*2 

A6 4.52 40*4 5.37 60*3 

A7 1.13 20*2 1.13 20*2 

A8 1.13 20*2 - - 

Weight (kg) 401.7679 392.1861 

Pn/Gn 30/100 30/100 

Run 10 10 

4.3. Continuous shape optimization 

The structural element for example 1 (52-bar) is classified 8 groups for 

the discrete size optimization and nodal points are classified 5 groups 

for the continuous shape optimization by preserving the structural 

symmetry. Thus, the cross-sections area and the coordinates are the 

design variables for the size and shape optimization, respectively. The 

example 2 (56-bar) has 7 groups for the discrete size optimization and 5 

group of the continuous shape optimization, respectively. 

The size of population is Pn=30 and the number of generation is 

Gn=100 for both examples. The optimal solutions for example 1 and 2 

are summarized in the Table 5 and 6. 

Table 5. Optimal solutions for shape optimization 

Design 

Variables 
Initial 

Example 1 

52-bar 

Example 2 

56-bar 

Z1 6.00 6.3246 5.5642 

X2 2.00 2.3529 2.5480 

Z2 5.70 4.7277 4.9855 

X6 or X10 4.00 3.1168 3.7788 

Z6 or Z10 4.50 3.5272 3.5060 

To show the performance of the used algorithm the best solution, mean 

solution, standard deviation, number of independent runs and the 

number of function evaluation are given in the same tables. The history 

of the best solution, mean solution and the standard deviation obtained 

using the TLBO algorithm for example 1 and 2 are given the Fig. 3 and 

Fig. 4, respectively. 

Table 6. Optimal solutions for size optimization 

Design 

Variables 

Example 1 

52-bar 

Pipe 

D*t 

Example 2 

56-bar 

Pipe 

D*t 

S
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ea

 (
cm

2
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A1 1.13 20*2 1.13 20*2 

A2 1.13 20*2 1.13 20*2 

A3 1.76 30*2 3.01 50*2 

A4 4.43 50*3 1.13 20*2 

A5 1.13 20*2 1.13 20*2 

A6 3.01 50*2 5.37 60*3 

A7 2.39 40*2 1.13 20*2 

A8 1.13 20*2 - - 

Weight (kg) 295.1062 288.2896 

Mean 297.3514 301.2919 

Std 3.1918 4.4355 

Pn/Gn 30/100 30/100 

Run 20 20 

Fig. 3 Convergence graph for 52-bar dome 

Fig. 4 Convergence graph for 56-bar dome 

To show the diversity of the independent runs for the both examples the 

weight of the related structure are given in the Table 7. The elapsed 

mean times to solve each example are given in this table. The computer 

used to solve these examples has the properties as; Intel(R) Core(TM) 

i7-4510U CPU @ 2.60GHz 8,00 GB, Windows 8.1. 

Table 7. Diversity of the run for two example 

Run 

no. 
52-bar dome 56-bar dome 

1 317.8353 334.1212 

2 328.9207 325.8887 

3 325.0644 288.2896 

4 310.2879 323.5695 

5 321.9327 312.0605 

6 297.8441 320.9292 

7 308.5499 322.2623 

8 327.8622 298.7914 

9 304.5463 334.1212 

10 308.8461 334.1212 

11 307.2416 322.2566 

12 337.9143 325.4253 
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Table 7. Diversity of the run for two example (cont.) 

Run 

no. 
52-bar dome 56-bar dome 

13 336.4490 320.9334 

14 331.6691 301.9716 

15 321.3125 292.1548 

16 307.3391 320.9289 

17 307.2191 293.7066 

18 321.5014 297.0656 

19 297.6162 283.6471 

20 295.1062 282.9497 

Best 295.1062 288.2896 

CPU time [s] 300.7543 327.7893 

5. CONCLUSION 

Size and shape optimization of 3D dome structure are investigated in 

this study. To optimize the dome structures a new and efficient 

algorithm called TLBO is coded in the Matlab. Better topology is 56-bar 

dome. Higher weight reduces shape optimization, compared to size 

optimization. 

Table 8. Results of optimization mass the domes 

Braced 

dome 

Size 

optimization 

Shape 

optimization 
Reduction mass 

52-bar 401.77 kg 295.11 kg 26.5 % 

56-bar 392.19 kg 288.29 kg 26.5 % 

2.4 % 2.4 % 
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